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An analys ts  of the genera l  fo rmula  for  the t r ans fo rman t  of a single ref lect ion der ived in [1] 
is p resen ted .  One of the approximat ions  of the genera l  fo rmula  mos t  convenient f r o m  the 
point of view of computer  p rog raming  is considered.  The question of the e r r o r  c h a r a c t e r -  
izing this approximat ion is examined,  in par t i cu la r ,  what conditions have to be sa t is f ied so 
as to reduce this e r r o r  below a ce r ta in  p reass igned  value. 

The t r ans fo rman t  of a single ref lect ion is one of the mos t  impor tant  p a r a m e t e r s  cha rac te r i z ing  the 
in terac t ion  of a r a r e f i ed  gas with a solid sur face  [2]. The genera l  fo rmula  of the t r ans fo rman t  for  r e f l ec -  
tion f r o m  a uniform, anisotropic,  differentiable random sur face  was der ived in [1]. However,  the d i r e c t u s e  
of this fo rmula  is impeded by i ts  fa i r ly  compl ica ted  express ion  for  the probabi l i ty  of an in te r sec t ionbe tween  
the sur face  and the t r a j ec to ry  of a gas par t ic le :  

c o  

I (T) = ~ p if (to), ~ (to) l S (T)] [ ~ (to) - -  ] (to)] d ~ (to) (1) 
(to) 

Here ~ (t) is a random function cha rac te r i z ing  the sur face  in the di rect ion t, f ( t )  is a function desc r ib -  
ing the t r a j e c t o r y  of the gas par t ic le ,  t o is a fixed point (or moment)  on the t axis; ~ (to) and );(t 0) a re  de r iva -  
t ives  of the functior~s ~ (t) and f ( t )  taken at the instant  to, T is a ce r t a in  known interval  preceding  the instant  
to, S(T) is the condition that in the in terva l  T, ~ (t) < ] (t), p if (to) , ~(to) I S (r)] i s t h e n o m i n a l d e n s i t y o f t h e  
combined distr ibution of ~ (to) and ~ (to) for  a value of ~ (to) =f(t0) and subject  to the condition S(T). 

In o rde r  to br ing  Eq. (1) to a f o r m  convenient for  numer ica l  calculat ions,  it is e a s i e s t  to use the ap-  
p rox imat ion  [1] according to which T is l imi ted  by the co r re l a t ion  in terval  T k while S(T) is  rep laced  by the 
condition that ~ (t) <f( t )  at a finite number  of points t i ET, i = 1-n. If the points a re  taken at identical  d is-  
tances  f r o m  one another  and the f i r s t  of them coincides with the beginning of the in terval  T while the final 
one coincides with the end of this in terval ,  Eq. (1) may be wri t ten  in the f o r m  

o o  o~ f (tl) f (tn) 

I (T)~I( t~, i=t- -n)= I P[f(t~176 [~(to)--](to)]d~(to)= I I "'" I p [ f ( t o ) , ~ ( t o ) ,  
(to) ;' qo) _ o o  - o ~  

{~' (tO t q~) )}-x 
[(ta) . . . . .  ~(tn)l [~( to) - - ]  (to)ld~(tn) .d[(t,)d~(t0) I " '"  I oil(t1) . . . .  ,~(tn)ld~(t,~)...d~(tl (2) 

- - c r  - - o ~  

This f o r m  al ready allows reasonably  s imple  compute r  p rograming ,  e i ther  by the expansion of the mul -  
t idimensional  in tegra ls  in convergent  s e r i e s  of t e t rachor ic  functions [3] or  by means  of the Monte Car lo  
method [4]. 

By taking the number  n fa i r ly  l a rge  we might reduce the e r r o r  a r i s ing  f r o m  the substi tution of (2) for  
(1) to prac t ica l ly  zero,  if it were  not for  the fact  that the computing t ime r i s e s  sharply  with increas ing  n. 
Hence one of the main  p rob lems  a r i s ing  in this connection with this approximat ion  l ies  in es t imat ing  the 
nainimum number  of points requi red  to prevent  the e r r o r  of the approximat ion 
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A =~ I (tl, i = 1 n) - -  I (T) (3) 
I(tl, i = t - - n )  

f r o m  exceeding an acceptable  value. This pape r  is devoted to a solution of this p rob lem.  In deriving the 
fo rmulas  he re  employed,  in individual cases  we have made use of data obtained f r o m  an analys is  of prof i le  
record ings  of s tandard  s am p l e s  with sur face  f inishes of c l a s s e s  6-14 (All-Union State Standard 9378-60). 

Let  us t he re fo re  cons ider  the p rob l e m of the min imum humber  of points,  r egard ing  the sur face  as a 
uni form,  normal ,  different iable  r andom field and using the following te rminology [5]. Any in te rsec t ion  of 
the par t ic le  t r a j e c t o r y  f ( t )  by the r andom function ~ (t) we shall  call  an overshoot .  If the in te rsec t ion  p ro -  
ceeds  f r o m  bot tom to top we shall  call  the overshoot  posi t ive,  if f r o m  top to bot tom we shall  call  it negat ive.  
The distance between neighboring overshoots  of different signs we shall  call  the duration of the overshoot .  
If in a specif ied in terva l  two, three ,  or  m o r e  in te rsec t ions  occur ,  we shall  speak of a twofold, threefold,  and 
so on overshoot  in this in terval .  F u r t h e r m o r e  let  A be the average  number  of rea l iza t ions  having a posi t ive 
overshoot  in the infinitely smal l  in terval  (to, t o +dt0) and B be the ave rage  number  of rea l iza t ions  pass ing  
below the par t i c le  t r a j e c t o r y  in the same in terval .  We sepa ra t e  these  rea l iza t ions  into th ree  types depend- 
ing on the conditions S(t i, i = l -n)  and S(T) (Fig. 1): 

1) rea l iza t ions  sa t is fying both conditions (A j, B1); 
2) rea l iza t ions  sa t is fying only the f i r s t  condition (A2, B2); 
3) rea l iza t ions  sa t is fying nei ther  of the conditions (A3, B3). 

Using these  fo rms  of nomencla ture  and a lso  allowing for  the fact  that  the instant  tj d i rec t ly  p r ecedes  
the instant  to, while in an infinitely shor t  in terva l  (to, t o +dto) the quanti t ies A, At, A2, and A 3 a re  infinitely 
smal l  c o m p a r e d  with B, B1, B2, and B3, we obtain 

I (t~, i =  t ~ n) dt o = (A~ -I- A~) I (B~ + B2), I (T) dt o = A I l B~ 

whence 

where  

I ('Ai "4- A2 Ai ~ 1 (  Ai-t-A: ~[ I A: A, B~ [ < max (Ai, A2) 
[ A [ :  Bi+B2 ~ ' ] [ ~ f ~ ] l  = Ai-~A~ Ai-~A2 Bi (4) 

A1 = A2 / (Ai d- A~), h~ = B~ / B i (5) 

Let us f i r s t  e s t ima te  the value of A 2. It is easy  to see that this equals 

As = pr / (t --  pr) (6) 

where  p r  is the probabi l i ty  of the appearance  of even overshoots  in the shor t  in terva ls  At i = (ti_l, ti) , i =2-n  
subject  to the condition S(ti, i = l -n) .  R e m e m b e r i n g  that in such in te rva ls  the probabi l i ty  of the appearance  
of repea ted  overshoots  fal ls  rapidly as the i r  mult ipl ic i ty  i nc r ea se s ,  we may in the p re sen t  case  confine our -  
se lves  to consider ing s imple  twofold overshoots .  

Let us f i r s t  e s t ima te  the probabi l i ty  of the appearance  of an overshoot  of this kind in the in te rva lAt i  
subject  to the condition [S(ti_t) , S(ti) ]. 

Let the overshoot  s t a r t  at the instant  T 1 and end at the instant  T 2. We denote the unknown probabi l i ty  
by PAti and the density by Wffl,  r2); then we have 

A~ i At i 

= S w( l, (7) 
0 "r 1 

Fur ther ,  le t  

Then [5] 

w = S S ( h -  ] ) ( ]  - b , o  (I1, I2, h,  b (s) 

where P(ft, ]'2, ~l, ~2) is the density of the combined dis tr ibut ion of the quanti t ies ~1, 42, ~ ,  and ~2 for  values 
of ~ 1 = f  ~, ~ 2 =f2. 

We may show that the quantity Wfft, 1-2) becomes  a max imum if the t r a j ec to ry  of the par t ic le  is turned 
around a s ingular  point lying at a height of (fl +f~)/2 before  coincidence with the horizontal  level  (Fig. 2). 
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Enumerating the quantities ~ ,  ~2, ~1 and ~2 in the order  of writing and allowing for the normali ty of ~ (t), 
we obtain 

where 

~ - - ~  

+ 2 M,d,~, -t- 2Ma~x~) ] d~d~x (9) 

] dl~ dl, d~a dl~ 

M =  d~, d~, d~a d,, 
dal da, daa da, 
da d,, d,a d,a 

Here dij a re  the second centra l  moments  of the distribution of the random quantit ies with numbers  i and j; 
Mij are the algebraical  complements of the e l ement s  dij in the determinant M. Let us denote the horizontal 
level  (f~ +f2) /2  by c, the in terval  ~ 2-~- ~ by ~,  and let  us t r an s fo rm  to new var iables  u = ~ i - f ,  v ='~ 2-.}. 
Then remember ing that 

we obtain 

M~2 = Mll, M44 = Maa, M~a = --M14, M~ = --Mla 

where 

The expression 

I 
W (~1, %) = ~ exp { -  ~-[Mas-}-M34-- "~ (M~8 -F M~4) "F 

x2 c ~ (Mu~_ MI~)] (IO) 

F(~,I) = I I exp{ - - l [2 (Maa- t -Mn, ) - - '~ (Mla+ M1,)] (u-Fv)} • 
0 @ 

t X exp {-- ~-M [ /za  (u' -t- v') + 2iaauv -F 2c ( i l ,  -- MI,)(u -- v)]} uvdudv (11) 

under the sign of the exponential in (10) cannot be positive [otherwise for vert ical  t ra jec tor ies  0 k- + oo) the 
value of Wffl, ~'2) would be equal to infinity]. Hence 

- M I F ('~, ]) (12) 

Let us find the maximum value of the integral Fff, )k). Differentiating this with respect  to jk we obtain 

o } = ~-M [2 (Ma3 + Ma,) - -  �9 (M~8 + Mt4)] (u + v) • 
0 0 

xexp  --  [2(M33+M3~)--~(M18+M~4)I(u+v) e x p { - - g ~  X 

X [Ms~ (~2 + v~) + 2M3~uv -t- 2c ( M ~ -  MI~)(u -- v)l} Uvdudv 

In Cartesian coordinates the range of integration Of the right-hand side of (13) occupies the fourth 
quadrant (Fig. 3). Let us divide this in two with the bisectr ix OO 1 and compare the values of the integrand 
function at the points A 1 (a, -b)  and A2(b, - a )  lying symmetr ica l ly  with respect  to the bisectr ix.  It is .not 
difficult to see that the sum of the values at these points vanishes if f = 0  and has a constant sign if f # 0 .  
Fur ther  remembering that the range of integration in (13) may be represented as a set of points of the form 
A t and A2, symmetr ica l  with respect  to the bisectr ix OO1, and replacing the actual integration by summa-  
tion with respect  to these points, we finally obtain 

a t ' (~ , } )= I0 ,  i f  I = 0  
o~ ' ( # o ,  if ] # : 0  
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TABLE 1 

Ne 
A ~ 0.01 A ~ 0.02 A ~ 0.05 A ~ 0 . t0  

I 
2 
3 
4 
5 
6 
7 
8 
9 

t0 

27 
36 
46 
55 
64 
73 
83 
92 

~9 
26 
33 
39 
46 
52 
59 
66 

1 
8 

13 
i7 
2t 
26 
30 
34 
38 
42 

6 
10 
13 
16 
19 
22 
25 
28 
3t 

Thus  the func t ion  Fff, 9;) has a s ing le  e x t r e m u m  with r e s p e c t  to 
the v a r i a b l e  ~; at  ze ro .  It is  c l e a r  that  th i s  is  a m a x i m u m ,  o the rwise  
we should have one of the condi t ions  

(~, o) ~ F (~, ~) ,  ~ (~, 0) < F (~, - oo), 

Yet both of t he se  a r e  i m p o s s i b l e ,  s i nc e  F( ' r ,  r = F ( ~ ,  - ~ )  = 0 
and for  any  f in i te  va lue  o f f  the quan t i ty  F(~-, f )  > 0. 

The fo rego ing  a r g u m e n t s  enab le  us  to wr i t e  inequa l i ty  (13) thus:  

9 0 

(t4) 

Q.E.D.  

The i n t e g r a l  at the end of Eq. (14) ma y  be found by us ing  [5]. Af te r  c e r t a i n  t r a n s f o r m a t i o n s  we obta in  

S - M.. I -  ,r(r, h) (15) 2uz 6(t-R2) V" I + R \ a ] J 
0 0 

=k(0) ,  ~ = R ( ~ ) = k ( ~ ) / k ( 0 )  
where  kff)  i s  the c o r r e l a t i o n  func t ion  of ~ (t), and 

r -  M83 ' M 3 a - - M ~ a  \ ~ ]  ' 

h 2 t F ( r , h ) : (  r_~_ h2)E(r ,h)_~_ (i -- r~)V* exp (__ l ~ r  ) h ( - - - ~ - ) [ t - - ( I ) ( a ) ] ,  - ~  exp 

E(r~ h) i x 2 + y~-- 2rxy dxdg,  
2~ (i r2) ~/~ exp --  2 (i -- r 2) 

2 a i -- r ~/* 

0 

We note that the e r r o r  A 2 wil l  only be s m a l l  (and it  is  th i s  case  which is  of p r a c t i c a l  i n t e r e s t )  if 
the i n t e r v a l s  Ati  a r e  c o r r e s p o n d i n g l y  s m a l l .  In any such i n t e r v a l  the quant i ty  R if) may  be expanded in  a 
M a c l a u r i n  s e r i e s :  

x~ Ro (2~) ~ R  (~) ,=0 (16) R (T) = nl_jo (2n)--~ T2r~ R~ ~ --dv2n " 

and l i m i t e d  to the f i r s t  few t e r m s .  R e m e m b e r i n g  f u r t h e r m o r e  that  ffl, T2) E A i and a l so  a l lowing  for  (14), 
(15) and the g e n e r a l  Rice  f o r m u l a  for  the a ve r a ge  n u m b e r  of z e r o e s  of the de r iva t i ve  dn~ (t)/dt n in  uni t  
l eng th  [6] 

1 R(o2n+2) '/3 
N i - -  T ~ (17) 

we e a s i l y  f ind 

. ~ ~xNo a N1 2 i c 2 (is) 
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where 

h c NI ~ -V, 

Subsequent substitution of (18) into (7) leads to the inequality 

,(§ Paq ~ ~r2N~ L\[[ N'~2No ] -- 17j At, 3 exp [ - -  -~- I ~F (t, h) (19) 

It may be shown that this inequality r ema ins  valid not only for  smal l  values of At i but also quite gen-  
e ra l ly  for  any values .  ~n addition to this ,  it follows f r o m  an analys is  of the prof i le  record ings  that for  rea l  
su r faces  N1/N0->1.5. We may here  eas i ly  convince ourse lves  that the r ight-hand side of inequality (19) 
r eaches  i ts  m a x i m u m  value at the middle level  of the sur face  (c = 0), whence finally we obtain 

n~No 3 N, ~ (20) 
P~' ~"% ~ [ ('-~o) - - i ]  Ati3 

We r e m e m b e r  that  p At I is the probabi l i ty  of the appearance  of a twofold overshoot  in a single in te r -  
val At i subject  to the condition [S(ti-1), S(ti)]. If we rep lace  this condition by S(ti i = 1-n > 2), analys is  of the 
prof i le  record ings  shows that the value of p a t  1 becomes  somewhat  s m a l l e r .  Allowing for  this c h a r a c t e r i s -  
tic and a lso  the e a r l i e r  a rguments  regard ing  even overshoots  (on page 683), and using PAtl to denote the 
probabi l i ty  of the appearance  of such overshoots  in a single in terval  Ati subject  to the condition S(ti, i = l -n) ,  
we shall  have 

j ~2No3 [ [ N , ' ~ 2 , t ]  ht~ 3 (21) 
p~t~r % ~ L\ No ] 

Let us cons ider  the case  in which the probabi l i ty  PAtir  is so low that the mean  number  of co r r e spond-  
ing overshoots  in the co r re la t ion  in terval  Nr is much s m a l l e r  than unity. Then these  overshoots  may  be 
r ega rded  as independent a n d t h e i r  appearance  descr ibed  by the Poisson  law [7]. For  the probabi l i ty  p r  we 
he re  obtain 

pr = i - -  exp (-- Nr) << Nr << p~,,rrk / Atl (22) 

If the sur face  is normal ,  then according to [8] Tk~2/N0 and Eqs.  (21), (22), and (6) lead to the follow- 
ing resul t :  

Nr (~Noatl) 2 [(N11 No) 2 -- i] (23) 
A2 ~ 48 -- Nr ~ 48 -- (nNoAt~) ~ [(Nx/No) ~ -- l] 

We note that the expres s ion  so found will only give a compara t ive ly  genuine e s t ima te  of A 2 under  
the condition Nr< 1(or z~2< 0.02). Otherwise it leads- to  a s e v e r e  ove re s t ima te  of the e r r o r  in question, and 
then it may  be cons idered  s imply  as an upper  l imi t  beyond which the e r r o r  cannot under  any c i r cums t an ces  
pass. 

Let us now return to the error  A I. This is equal to the probability pr subject to the condition of a 
positive overshoot at the instant t o . It is analytically difficult to estimate the effect of this condition. How- 
ever, direct analysis of the profile recordings shows that this leads to a certain reduction in the probability 
under consideration and correspondingly to the inequalities 

At,< P4, A < A~ (24) 

Thus on the bas i s  of (4), (23), and (24) we obtain the following es t ima te  of the number  of points tiE T 
sufficient for  the e r r o r  of approximat ion  (2) to fall below A : 

i -}- a N~ 2 (25) 
n > t  + 2n V ~  [(W~-0)--i] 

The values of n calculated from Eq. (25) are shown in Table 1. It should nevertheless be emphasized 
that these values were calculated for the most unfavorable (in the sense of the value of n) trajectories of 
the molecules and in any specific cases may be considerably reduced [1]. 

L I T E R A T U R E  " C I T E D  

1. V . L .  Lozhkin and Yu. A. Ryzhov, "Effect  of sur face  roughness  on the in terac t ion  of a r a re f i ed  gas 
with a solid su r face , "  Zh. Pr ik l .  Mekhan. i Tekh. Fiz. ,  No. 4 (1972). 

2. R . G .  Barantsev ,  "Reflect ion of .gas molecules  f r o m  rough s u r f a c e s , "  Aerodynamics  of Raref ied  
Gases ,  Coll. 1 [in Russian],  Izd. LGU (1963). 

3. M . G .  Kendall,  "Proof  of re la t ion connected with the t e t r achor ic  s e r i e s  and i ts  genera l iza t ion ,"  
Biometr ika ,  32, 2 (i941). 

686 



4. Ya. S. Dymarskii, N. N. Lozinskii, A. T. Makushkin, V. Ya. Rozenberg, and V. R. Erglis, Program,  
mers  ~ Handbook, Vol. 1 [in Russian], Sudpromgiz, Leningrad (1963). 

5. V . I .  Tikhonov, Overshoots of Random Processes  [in Russian], Nauka, Moscow (1970). 
6. M.S.  Longuet-Higgins, Statistical Analysis of a Random Moving Surface, in: Wind Waves [Russian 

translation], IL, Moscow (1962). 
7. A.A.  Sveshnikov, Applied Methods of the Theory of Random Functions [in Russian], Nauka, Moscow 

(1968). 
8. A . F .  Romanenko and G. A. Sergeev, Questions of the Applied Analysis of Random Processes  [in Rus- 

sian], Soy. Radio, Moscow (1968). 

687 


